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2. 
 

Response of Simple Structures  
to Earthquake Ground Motions 

 

 

 

2.1 INTRODUCTION 
 
 The main purpose of response analysis in earthquake engineering is the estimation of 

earthquake induced forces and deformations in structures under the action of earthquake 

ground motions. To this end, our approach will start with developing response analysis 

procedures for the simplest dynamic system, called the single degree of freedom system. 

These procedures are then extended to more complicated systems in the following chapters. 

We will introduce the definition of a single degree of freedom system in this chapter 

first, and then derive the equations of motion governing its free vibration response (simple 

harmonic motion) and forced vibration response. Earthquake ground excitations lead to 

special forms of forced vibration response. 

 
Single Degree of Freedom (SDOF) System:  

The deformed shape of the system at any instant can be represented in terms of a single 

dynamic coordinate u(t), called the single degree of freedom. Single degree of freedom 

systems can be either “ideal SDOF systems”, or “idealized SDOF systems”.  

Ideal SDOF Systems: Lumped Mass and Stiffness 

The entire mass and stiffness of the system is lumped at a point where the dynamic 

coordinate u(t) is defined. The car in Fig. 2.1.a with mass m connected to a fixed end with a 

spring with stiffness k, which is free to move on rollers only in the lateral direction is a typical 

ideal SDOF system. An inverted pendulum type of structure where the lumped mass m is 

connected to the fixed base with a massless cantilever column is also an ideal SDOF system 

(Fig. 2.1.b). In this case the spring stiffness is identical to the lateral stiffness of the cantilever 

column, i.e.  k=3EI/L3. The motion of the mass and the elastic force which develops in the 

spring at any time t can be represented by the dynamic displacement u(t), which is the single 
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degree of freedom in both systems. On the other hand, a pendulum where the mass m 

connected with a chord of length l that swings about the fixed end of the chord in the gravity 

field g is another example of an ideal SDOF system (Fig. 2.1.c). In this case the degree of 

freedom is the angle of rotation θ. 

 

 

 

 

      

          

    
(a)             (b)                                    (c)  

Figure 2.1. Ideal SDOF systems: (a) a car on rollers, (b) an inverted pendulum structure,  
 (c) a pendulum swinging in the gravity field.  

 
Idealized SDOF Systems: Distributed Mass 

 More complicated dynamic systems with distributed mass and stiffness can also be 

idealized as SDOF systems. Let’s consider a cantilever column and a simple multistory frame 

in Fig. 2.2 where the lateral deformation shapes exhibit variation along the height during 

motion. Both systems can be defined as idealized SDOF systems if the lateral dynamic 

deformation distribution u(x, t) along height x can be expressed as 

where (x) is the normalized deformation profile, i.e. . Lateral displacement 

at the top is the single degree of freedom.  Note that (x) is assumed to be constant and 

not changing with time. This is not exactly correct, but practically acceptable. This 

assumption is valid for simple structural systems. For example, (x)=(x/L)2 is an acceptable 

normalized deformation shape for both SDOF systems in Fig. 2.2 since it satisfies the 

boundary conditions u(0)=0 and u’(0)=0 at x=0.  

 

 

 

         

 

 

          (a)              (b) 
 

Figure 2.2. Idealized SDOF systems: (a) cantilever column, (b) multistory frame. 
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2.2 EQUATION OF MOTION: DIRECT EQUILIBRIUM  
 

Consider two ideal SDOF systems in Fig. 2.3 with a mass, spring and damper. Damper 

is the only difference between Figs. 2.2 and 2.3, which represents internal friction in the 

actual mechanical system that is idealized as a SDOF system. Internal friction develops in 

deforming mechanical systems such as shown in Fig. 2.2 due to rubbing of the molecules with 

respect to each other during dynamic deformations. Internal friction leads to energy loss in a 

vibrating system. 

 

 

 

       

 

 

Figure 2.3. Ideal SDOF systems with mass m, stiffness k and damping c. 

 

When the mass moves by a positive displacement u(t) with a positive velocity (t) 

under an external force F(t), the spring develops a resisting force which is equal to k·u(t), and 

the damper develops a resisting force which equals c· (t), both in the opposite directions. Free 

body and kinetic diagrams of the masses in both SDOF systems are shown in Fig. 2.4.   

 

 

         

 

 
Figure 2.4. Free body diagrams of the masses when they displace by  and moving with a velocity 

of  and an acceleration of at time  
 

Applying Newton’s second law of motion  for dynamic equilibrium of the 

mass in the lateral direction leads to  

     (2.1) 
or 

     (2.2) 
 

This is a 2’nd order linear ordinary differential equation (ODE) with constant coefficients m, c 

and k. 
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2.3 EQUATION OF MOTION FOR BASE EXCITATION 
 

The base of the inverted pendulum moves with the ground during an earthquake 

ground shaking with a ground displacement of ug (t) as shown in Fig. 2.5.a. There is no direct 

external force  acting on the mass when ground moves, but inertial force develops on the 

mass according to Newton’s 2’nd law (F=ma) where a is the total acceleration of the mass   

(a ≡ü total ). It is the sum of ground acceleration and the acceleration of the mass relative to the 

ground. 

       ü total = üg + ü             (2.3) 

 
Free body diagram of the mass is shown in Fig. 2.5.b. Then, according to Newton’s 2’nd law, 

mütotal yields 

        (2.4) 

or 
               (2.5) 

 
Transforming into the standard form of Eq.(2.2) leads to, 
 

     (2.6) 
 
where  is considered as an effective force.  
 
 
         
  

 

          

 

 

 

 

 

 
       (a)             (b)   
        

Figure 2.5. (a) An SDOF system under base excitation, (b) free body diagram of the mass when it 
displaces by  while moving with a velocity of  and an acceleration of at time  
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2.4 SOLUTION OF THE SDOF EQUATION OF MOTION  
 
 The solution of a 2’nd order ODE can be obtained in two parts:  

 
u(t) = uh(t) + up(t)      (2.7) 

 
where uh is the homogeneous solution and up is the particular solution. In vibration problem, 

uh represents the free vibration response (F = 0) and up represents the forced vibration 

response (F ≠ 0). 

 
2.4.1 Free Vibration Response 

The motion is imparted by the initial conditions at t=0: u(0) = u0 (initial displacement) 

and (0) = 0 (initial velocity). The equation of free vibration is given by 

 
 ü       (2.8) 

 
Dividing all terms by the mass m gives 
 

       (2.9) 

Let     and  .  This is a simple replacement of the two coefficients    and  

 in terms of two new coefficients , which have distinct physical meanings. The 

dimensionless parameter   is the critical damping ratio, and n is the natural frequency 

(rad/s). Vibration occurs only if    1. Then Eq. (2.9) can be written as, 

 
   ü      (2.10) 

 

Undamped Free Vibration (  = 0) 

 When damping is zero, Eq. (2.10) reduces to  

 
      (2.11) 

 
Eq. (2.11) represents simple harmonic motion. Only a harmonic function satisfies Eq. (2.11) 

with a harmonic frequency of . Its most general form is a combination of sin and cos 

functions with arbitrary amplitudes. 

 
      (2.12) 
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 and  are determined by introducing the initial conditions u(0) = u0 and (0) = 0, leading 

to 

        (2.13) 

 
Eq. (2.13) is shown graphically in Fig. 2.6. 

 

 

 

 

 

 

 

 

Figure 2.6. Undamped free vibrations of a SDOF system  

 

Damped Free Vibration (0 1) 

 The presence of damping in free vibration imposes a decaying envelope on the 

undamped free vibration cycles in Fig. 2.6. Decay is exponential, and decay rate depends on 

, as given in Eq. (2.14).  

 
     (2.14) 

 
The amplitude of harmonic vibration reduces exponentially at each cycle, and approaches 

zero asymptotically as shown in Fig. 2.7.  

 

 

 

 

 

 

 

 
Figure 2.7. Free vibrations of a damped (under-damped) SDOF system  
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Note that the term in brackets in Eq. (2.14) is similar to Eq. (2.13) where  is 

replaced by , which is the “damped” natural frequency given by Eq. (2.15). 

 

       (2.15) 

  
 ≤ 0.20 for structural systems in general, hence d  n. Typical viscous damping ratios that 

can be assigned to basic structural systems are given in Table 2.1. 

 
Table 2.1. Typical damping ratios for basic structural systems 

Structural type 
Damping ratio (%) 

<50% yield ~ yield 

Steel (welded connections) 2-3 3-5 

Reinforced concrete 3-5 5-10 

Prestressed concrete 2-3 3-5 

Masonry 5-10 10-20 

 
Example 2.1. Consider the pendulum in Fig. (a) with mass m connected to a chord of length 
L, oscillating in the gravity field.  

a) Determine its equation of motion. 
b) Solve the equation of motion for small oscillations θ when the motion starts with an 

initial displacement θ0. 
 
a) At any θ(t), free body diagram of the mass is shown in Fig.(b), where T is the tension in the 
chord. Equation of motion in the (tangential) direction can be written as  
 

From Fig. (b),  

Rearranging, 
   (Solution a)      (1) 

 

 

 

 

         

 

   (a)     (b) 
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b) Eq. (1) is a 2nd order nonlinear ODE. Nonlinearity is due to the sin θ term. For small 
oscillations, sin θ ≈ θ. Hence, the equation of motion becomes linear. 
 
      
or 
     
With similitude to Eq. (2.11),  

 

The solution from Eq. (2.12) is, 
 

             (2) 
 
Substituting θ (0) = θ0 and  into Eq. (2), we obtain 
 
           (Solution b) 
 
 
Example 2.2. Determine the natural frequency of vibration for the system shown in Fig. (a) 
where the bar AB is rigid and it has no mass. 
 
The system in Fig. (a) is a SDOF system where the vertical displacement of end B can be 
employed as the DOF. The displacement variation of the SDOF system is always linear from 
A to B with a fixed shape as shown in Fig. (b).  
 
 
          
 
 
 
           (a)             (b) 
 
Since all forces are not directly acting on the mass, a direct formulation of the equation of 
motion is not possible. The conservation of energy principle provides a simpler approach. 
 

         (1) 

where   is the kinetic energy and  is the potential energy at any time , given by 
 

     (2) 

Here, we should consider from Fig. (b) that the velocity of the mass in terms of the DOF u is 

. Hence, . Substituting into Eq. (1), and taking time derivative of both sides, 
 

 
or  
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Accordingly,  

            (Solution) 
 

Example 2.3. A single story, single bay portal frame is given below in Fig. (a).  
a) Determine the equation of free vibration and the natural period of free vibration, 
b) Determine the equation of motion under base excitation üg(t). 

 
a) The portal frame is a SDOF system with the fixed deflection shape shown in Fig. (b). The 
lateral displacement u of the mass m at the roof is the degree of freedom. Free body diagram 
of the roof mass is given in Fig. (c). 
 
 
 
 
 
  (a)            (b)    (c) 
 
 
 
 
Applying Newton’s second law of motion  for dynamic equilibrium of the mass in 
the lateral direction leads to  
 

             (1) 
Rearranging, 

 
 

 is the effective stiffness of the portal frame, and m is the mass. Accordingly,  
  

                            (Solution a) 
 
b) Eq. (1) can be written for base excitation as, 
 

 
or,  

                                         (Solution b) 
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2.4.2 Forced Vibration Response: Harmonic Base Excitation 

 Harmonic excitation can either be applied as an external harmonic force, or an 

effective harmonic force due to a harmonic base excitation . Equation of 

motion under harmonic excitation can then be written as 

 
ü     (2.16) 

 
 The homogeneous solution is identical to the damped free vibration response in Eq. 

(2.14), where vibration occurs at the free vibration frequency . 

  
     (2.17) 

 
 are the arbitrary amplitudes that have to be determined from the initial conditions 

at t=0. However the initial conditions are imposed on the general (total) solution, not on the 

homogeneous solution alone.  

 The particular solution is assumed to be composed of sin and cos functions where 

vibration occurs at the forced vibration frequency .  

 
       (2.18) 

 
The arbitrary harmonic amplitudes and  are determined by using the method of 

undetermined coefficients for up. 

 

  (2.19) 

 
 

General Solution 
 
 The general solution is the combination of homogeneous and particular solutions from 

Eqs. (2.17) and (2.18), respectively. Substituting and  from Eq. (2.19) into Eq. (2.18), 

simplifying and collecting into u(t)=uh(t)+up(t), we obtain 

 
   (2.20) 

 
 and  are determined from the initial conditions as indicated above. 
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In damped systems under harmonic excitation, uh is called the transient and up is called 

the steady-state response since the transient part decays with time as shown in Fig. 2.7. If the 

transient part is ignored, then the remaining component up can also be expressed as  

 
      (2.21) 

 
where 

 

     (2.22) 

 

Here, is the amplitude, and  is the phase lag (delay) between up and . It can be 

shown by expanding  that Eq. (2.21) with Eq. (2.22) is identical to the second 

(steady-state) term in Eq. (2.20). The variation of  with the frequency ratio β and the 

damping ratio   is plotted in Fig. 2.8, which is called the frequency response function. It can 

be observed that the response displacement amplitude amplifies as β approaches to unity 

whereas increase in damping ratio reduces the level of amplification. 

 

 

 

 

 

 

 

 

 

Figure 2.8. Frequency response function for damped systems under harmonic excitation  

 

Resonance  

When  =1, i.e. the forcing frequency  is equal to the natural frequency of vibration 

 in Eq. (2.19), Eq. (2.18) reduces to 

 
     (2.23) 

 
Eq. (2.23) is plotted in Fig. 2.9.a. The amplitude of displacement cycles increase at every 

cycle and asymptotically approach   . 
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Meanwhile, if  0, L’Hospital rule gives 

 
     (2.24) 

 
The second term in the parenthesis indicates a linear increase of displacement amplitude with 

time, without any bound. Eq. (2.24) is plotted in Fig. 2.9.b. 

 Eqs. (2.23) and (2.24) define a vibration phenomenon called the resonance. In 

mechanical systems, resonance causes very high displacements which usually lead to 

collapse.       

    

   

 

 

 

   (a)           (b) 

Figure 2.9. Resonance in (a) damped, (b) undamped SDOF systems under harmonic excitation  

 
 
2.4.3 Forced Vibration Response: Earthquake Excitation  
 
 A SDOF system under earthquake ground acceleration is shown in Fig. 2.10. The 

excitation function  or  can rarely be expressed by an analytical function in the 

case of earthquake ground excitation. Ground acceleration  is given numerically. 

Closed-form analytical solution similar to Eq. (2.20) is not possible. Then the solution is 

obtained by using numerical integration techniques. The most practical and also the most 

popular method is the step-by-step direct integration of the equation of motion (Newmark, 

1956). 

 
 

 

       

 

 

 

Figure 2.10. An SDOF system under earthquake excitation  
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Numerical Evaluation of Dynamic Response 
 
 Consider the equation of motion of a SDOF system at time t = ti and t = ti+1  ti + t 

where t is small. 

     (2.25.a) 
        

         (2.25.b) 
 

Subtracting (2.25.a) from (2.25.b) gives,  

 
   (2.26) 

   
or 

             (2.27) 
 
where  

      (2.28) 
 

Eq. (2.27) contains three unknowns . Therefore it is indeterminate. 

However, we may impose two kinematical relations between these three response parameters, 

such as ü . This can be achieved by assuming a variation of 

acceleration ü(t) over t, then integrating twice to calculate (t) and u(t) within t. We 

assume that ü  and  at the beginning of the time step are known from the previous step. 

Two common assumption can be made on the variation of ü(t) over t : constant 

average acceleration and linear acceleration variation. 

 

Constant Average Acceleration 

 Consider the variation of acceleration ü(t)  over a time step  shown in Fig. 2.11. 

This actual variation can be estimated by an approximate, constant average acceleration 

variation given in Eq. (2.29).   

 

 

 

 

 
 
 

 
Fig. 2.11. Actual and estimated acceleration variations over a time step . 
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ü  ;    (2.29) 
 
 

It should be noted here that the actual variation of acceleration on the left hand side of 

Eq. (2.29) is not known, and hence üi+1 on the right hand side is also an unknown. This is 

merely a transfer of unknown from a function to a discrete value by the assumption of 

constant average acceleration variation.  

 We can integrate constant acceleration variation given in Eq. (2.29) twice, in order to 

obtain the variations of velocity and displacement over the time step t, respectively. This 

process is schematized in Fig. 2.12. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.12. Integration of constant average acceleration variation over the time step t  
  

The first integration is from acceleration to velocity, i.e. the integration of d =üdτ.  
 

       (2.30) 
 

Substituting ü from Eq. (2.29) into Eq. (2.30) and integrating, we obtain   
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            (2.31) 

Eq. (2.31) can also be written for τ=ti+1 at the end of the time step which gives 
  

                                     (2.32) 
   
Then, substituting  from Eq. (2.31) into  and integrating over t,  
 

         (2.33) 
 
we obtain  

         (2.34) 
 
The terms ,  and  at ti+1 in Eqs. (2.32) and (2.34) are the unknowns.  

Let ü ü ü ü ü ü ü . When this identity is substituted 

into Eqs. (2.32) and (2.34) and rearranged, two new equations are obtained: 

 
      (2.35) 

 
     (2.36) 

 
,  and  are the new three unknowns in Eqs. (2.35) and (2.36). Combining these 

equations with Eq. (2.27) forms a system of three coupled linear equations with three 

unknowns, and can be solved through elimination.  

 Let’s rearrange (2.35) and (2.36) to express üi and  in terms of ui. From Eq. 
(2.36),  

ü ü           (2.37) 
 
Substituting ü  above into Eq. (2.35), 
 

             (2.38) 
 
Finally, substituting üi and  from Eqs. (2.37) and (2.38) into Eq. (2.27) and rearranging, 

we obtain 

       (2.39) 
 
where 

          (2.40) 
         
is the instantaneous dynamic stiffness, and 
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  ü     (2.41) 
    
is the effective dynamic incremental force. Note that  in Eq. (2.40), i.e. dynamic 

stiffness does not change at each time step i. 

 The recursive solution starts at i =  with  as the initial 

conditions. This procedure is unconditionally stable: Errors do not grow up with the recursion 

steps. However    is required for accuracy. 

 The step-by-step direct integration procedure described above is formulated as an 

algorithm below, which can be easily coded with conventional software (FORTRAN, 

MathLab, Excel, etc.). 

 
Integration Algorithm  

1. DEFINE  m, c, k, ,  and t 
2. ü     
3. CALCULATE k* from Eq. (2.40) 
4.       
5. CALCULATE    from Eq. (2.41) 

6.     
7. CALCULATE   and   from Eqs. (2.37)  and (2.38) 
8. ü  

9. GO TO 4 
 
 
Example 2.4. A linear elastic SDOF system is given with Tn = 1 s, m = 1 kg (unit), ξ = 5%, 
u(0) = ů(0) = 0 (initially at rest). Determine the displacement response, u(t) under the base 
excitation üg(t) defined below. Use  Δt = 0.1 second in calculations. 
 

 
     
Solution 

,     ,       

 

-0,5

0

0,5

0 0,1 0,2 0,3 0,4 0,5ü g
(g

)

Time (s)
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,      
 

m Tn (s) ωn (rad/s) ξ Δt (s) c k u0 ů0 ü0 k* 
1 1 6,28 0,05 0,1 0,628 39,478 0 0 0 452,045 

 
   where     

i = 0:         
 

i t ui ůi üi ΔFi* Δui Δůi Δüi ui+1 ůi+1 üi+1 
0 0 0 0 0 -4,905 -0,0109 -0,2170 -4,3403 -0,0109 -0,2170 -4,3403 
1 0,1 -0,0109 -0,2170 -4,3403 -12,729 -0,0282 -0,1291 6,0978 -0,0390 -0,3462 1,7575 
2 0,2 -0,0390 -0,3462 1,7575 -5,861 -0,0130 0,4330 5,1448 -0,0520 0,0868 6,9023 
3 0,3 -0,0520 0,0868 6,9023 12,482 0,0276 0,3786 -6,2330 -0,0244 0,4654 0,6693 
4 0,4 -0,0244 0,4654 0,6693 

 

 
Note: Solution with  Δt =0.01 seconds can be considered as exact. 

 
 
2.5 EARTHQUAKE RESPONSE SPECTRA 
 

Consider various SDOF systems with different T, but the same , subjected to a 

ground excitation as shown in Fig. 2.13. Note that T1 < T2 < T3 <··· in Fig. 2.13.  

        
    

        

        
 
 
 
     

 
Fig. 2.13. Different SDOF systems under earthquake ground excitation  

 

t 

gu
.. Düzce NS 

17/08/1999 

T1   T2   T3   T4   

u1(t) 

u2(t) 

u3(t) 

u4(t) 
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We can calculate the displacement response of each SDOF system u(t) by direct 

integration. Time variations u(t) and ü(t) of 5 percent damped SDOF systems with  T1=0.5 s, 

T2=1.0 s and T3=2.0 s under the NS component of 1999 Düzce ground motion are plotted in 

Fig. 2.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.14. Time variations of displacement and acceleration responses of several SDOF 
systems under the NS component of 1999 Düzce ground motion 

 

We can select the peak displacement response from each u(t) function, and define this 

value as the spectral displacement Sd, where, 

           (2.42) 
 
Since each u(t) is a function of T and , Sd also varies with T and . Hence, 
 

      (2.43) 
 
Similarly, spectral acceleration can be defined as the peak value of total acceleration 
 

ü ü             (2.44) 
where 

       (2.45) 
 
Sa and Sd values are marked on Fig. 2.14 for the response of each SDOF system.  
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Accordingly, Sd  and Sa in Eqs. (2.43) and (2.45) can be plotted as functions of T and . 

When this process is repeated for a set of damping ratios, a family of Sa and Sd curves are 

obtained. The family of these curves is called the acceleration response spectra and 

displacement response spectra of an earthquake ground motion, respectively. Acceleration 

and displacement response spectra of the NS component of 1999 Düzce ground motion are 

plotted in Fig. 2.15. The peak values indicated in Fig. 2.14 are also marked on Fig. 2.15. 

The duration effect is almost lost in the spectral information since an earthquake 

response spectrum only considers the time when peak response occurs. This is practical for 

design, however a long duration ground motion may cause low cycle fatigue and consequent 

degradation. We cannot obtain such detailed information from a response spectrum.  

 

 

 

 

 

 

 

 
Fig. 2.15. Acceleration and displacement response spectra of the NS component of 1999 

Düzce ground motion  
  

It can be observed from Fig. 2.15 that when T=0, Sa =üg,max  (PGA) and Sd = 0. On the 

other hand, when T approaches infinity, Sa  approaches zero and Sd  approaches ug,max  (PGD). 

These limiting situations can be explained with the aid of Fig. 2.16. 

 T=0 is equivalent to ωn = ∞, i.e. the system is infinitely stiff. Then the spring does not 

deform (u=0, hence Sd = 0) and the motion of the mass becomes identical to the motion of 

ground. Accordingly, maximum acceleration of the mass becomes identical to the acceleration 

of the ground which makes their maximum values equal.  

 T approaches infinity when ωn  approaches zero. Hence the system becomes infinitely 

flexible. An infinitely flexible system has no stiffness and it cannot transmit any internal 

lateral force from the ground to the mass above. Ground moves while the mass stays 

stationary during the earthquake. The total displacement of the mass is zero (utotal = u+ug = 0). 

Accordingly |u|max=|ug|max, or Sd =PGD. Similarly, the total acceleration of the mass is zero 

(ütotal=ü+üg =0) which makes Sa =0 from Eq. (2.44). 
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Fig. 2.16. Response of infinitely stiff and infinitely flexible SDOF systems to ground excitation 

 

2.5.1 Pseudo Velocity and Pseudo Acceleration Response Spectrum 

 Pseudo spectral velocity PSv and pseudo spectral acceleration PSa can be directly 

obtained from Sd. Their definitions are given in Eqs. (2.46) and (2.48) below. PSv and PSa are 

very close to Sv and Sa respectively, for   0.20. 

 
Pseudo Velocity 

                   (2.46) 

 
  for   0.20. It is related to the maximum strain energy Es stored in the 

SDOF system during the earthquake. 

 

   (2.47) 
 
Pseudo Acceleration 

                (2.48) 
 
  for 0.20. It is related to the maximum base shear force at the support of 

the SDOF system during the earthquake.  

 Lets consider an undamped SDOF system under a ground excitation üg. Its equation of 

motion is, 

ü ü      (2.49) 
     
Therefore, 
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ü ü             (2.50) 

 
Then, 

     or      (2.51) 
 
for =0.  Comparison of Eqs. (2.48) and (2.51) indicates that PSa=Sa when =0.   

 The shear (restoring) force and base shear force which develop in a SDOF system 

during an earthquake ground excitation are shown in Fig. 2.17. Base shear force becomes 

maximum when the relative displacement is maximum, i.e.,  

 
   (2.52)    

 
Now, let’s consider a damped SDOF system. Eq. (2.52) is replaced by 
 

   (2.53) 
 
Hence, the maximum base shear force in an undamped SDOF system can directly be obtained 

from PSa through Newton’s second law. 

 

 

 

 

 

 

 

 

Fig. 2.17. Internal shear force and base shear force developing in an SDOF system under earthquake 
ground excitation 

 
 
2.5.2 Practical Implementation of Earthquake Response Spectra 

 If Sd, PSv and PSa are available for an earthquake ground excitation, then we can easily 

obtain the maximum values of response displacement, strain energy, internal elastic force and 

base shear force of an SDOF system from these spectral charts. The only data we need for a 

SDOF system is its natural vibration period Tn and viscous damping ratio . 

 The maximum base shear force in Eq. (2.53) can be formulated as follows: 
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          (2.54) 
 
where  is the weight in the gravity field. Then, 
 

          (2.55) 

 
The ratio of maximum base shear force to weight is called the base shear coefficient, 

which is a practical yet very important parameter in earthquake engineering analysis and 

design. It is denoted with C, and it can be obtained directly from PSa. 

 
      (2.56) 

 
 
Example 2.5. Consider the portal frame in Example 2.3. The properties assigned are, column 
size: 0.40x0.50 m, E=250,000 kN/m2, L=3m and m=25 tons. Determine the maximum 
displacement of the roof if the frame is subjected to the 1999 Düzce NS ground motion. 
Viscous damping ratio is 5 %. 
 
The natural vibration period was defined in Example 2.3. When the numerical values given 
above are substituted, Tn =1.3 seconds is calculated. Then the spectral acceleration can be 
determined from Fig. (2.15) at T=1.3 seconds as = 4 m/s2.  

The effective force acting at the roof mass is,  
 

 = 25 tons x 4 m/s2 = 100 kN 
 

The effective stiffness expression was also derived in Example 2.3. When the 
numerical values given above are substituted, = 578.7 kN/m is calculated. Finally, 
   

(Solution) 

 
 
2.5.3 Normalization of Earthquake Response Spectra 

 Spectral acceleration shapes for different earthquake ground motions exhibit 

significant variations, as shown in Fig. 2.18.a for a suit of 10 ground motions. They are 

usually normalized by selecting a fixed damping ratio first, usually  = 0.05, then removing 

the effect of with peak ground acceleration üg,max (PGA) by dividing Sa(T) with PGA for all T. 

The spectral acceleration shapes normalized with respect to PGA in Fig. 2.18.b. display less 

variation compared to the non-normalized spectra in Fig. 2.18.a.  
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Fig. 2.18. (a) Acceleration response spectra of 10 ground motions, (b) acceleration response spectra of 
10 ground motions normalized with respect to their peak ground accelerations. 

 

 It is possible to obtain statistical averages of PGA over period (Fig. 2.18.b). 

However, this is usually done first by grouping the ground motions with respect to the soil 

conditions of the recording stations (sites), then obtaining the mean values of PGA 

values over . This exercise was first carried out by Seed et al. (1976) which indicate the 

effect of local soil conditions on the shape of mean acceleration spectra (Fig. 2.19). These 

shapes form the basis of earthquake design spectra defined for local soil conditions, which 

will be discussed in Chapter 4. 

 

 

 

 

 

 
 

(b) 

(a) 
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Fig. 2.19. (a) Mean normalized acceleration response spectra of ground motions classified with respect 
to local soil conditions (Seed, H. B., Ugas, C. and Lysmer, J. (1976) , “Site-dependent spectra for earthquake-

resistant design”, Bull.Seism. Soc. Am. 66, No.1, 221-243). 
 
 
 
2.6 NONLINEAR SDOF SYSTEMS 
 
 The lateral forces which act on linear elastic structural systems under severe 

earthquake ground motions are usually very large. It can be observed from Fig. 2.18.a that the 

effective lateral forces (m·PSa) are at the order of the weight (mg) in the period range of 0.4-

1.0 seconds. Fundamental vibration periods of most of the building structures fall into this 

period range. Designing structures for such high levels of lateral forces is not economical and 

feasible for a very seldom event such as a strong earthquake which may occur only with a 

small probability during its service life. The preferred approach in seismic design is to provide 

a lateral strength Fy that is less than the elastic strength demand Fe, however implement a 

plastic deformation capacity to the system such that it can deform beyond the linear elastic 

range during a strong ground motion.  

When the yield displacement capacity of the lateral load resisting system is exceeded, 

the slope of the restoring force-deformation curve, or stiffness softens. A typical force-

deformation path of a SDOF system subjected to a single cycle of large ground displacement 

is shown in Fig. 2.20. This type of nonlinear behavior is called material nonlinearity in 

mechanical systems because softening occurs due to the deterioration of material properties at 

large displacements, similar to the stress-strain behavior of steel and concrete materials. Fs is 

the restoring force (internal resistance), Fy is the yield force capacity and uy is the yielding 

displacement in Fig. 2.20. 
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Fig. 2.20. Variation of internal force Fs with displacement u along a nonlinear force-deformation path. 
 
 
2.6.1 Equation of Motion of a Nonlinear SDOF System 
 
 Equation of motion of a nonlinear SDOF system is also mathematically nonlinear.  

  
ü ü           (2.57) 

 
The restoring force term Fs creates the nonlinearity in the equation of motion since Fs (u) is a 

nonlinear function. In a linear system, Fs is equal to k u which is a linear relationship between 

Fs and u whereas Fs = Fs (u) in a nonlinear system which implies that the tangent stiffness k is 

not constant as in a linear system, but changes with the displacement u. The variation of Fs 

with u along a nonlinear force-deformation path is schematized in Fig. 2.20.  

The equation of motion can be written in incremental form with the aid of Fig. 2.21. 

 
ü ü     (2.58) 

 
The incremental variation of restoring force with u can be estimated with   
 

     (2.59) 
 
where 
 

     and        (2.60)  
 
and ki is the tangent stiffness at ui.  
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Fig. 2.21. Incremental variation of Fs and u. 
 

Step-by-step direct integration algorithm developed for linear elastic systems in 2.4.3 

can be applied to nonlinear systems if tangent stiffness ki (ui) is known and hence can be 

updated  at each load step i. This requires a priori knowledge of the Fs (u) function, which is 

called the hysteresis relationship.  

 

2.6.2 Nonlinear Force-Deformation Relations 
 
 Hysteresis relations are composed of a set of rules by which the variation of Fs is 

defined in terms of the variation history of u during the previous loading steps. This is called a 

hysteresis model. Two basic hysteresis models are employed in earthquake engineering: 

Elasto-plastic and stiffness degrading models. The elasto-plastic model is usually employed 

for representing the hysteretic flexural behavior of steel structures whereas the stiffness 

degrading model represents the hysteretic flexural behavior of concrete structures 

respectively, under loading reversals induced by an earthquake ground motion.  

The set of rules which define elasto-plastic and stiffness degrading hysteretic behavior 

with strain hardening are shown in Fig. 2.22. Fy and uy are the yield strength and yield 

displacement respectively, k is the initial elastic stiffness and αk is the strain hardening 

stiffness after yielding where α is usually less than 10 percent. When α=0, the system is 

elastic-perfectly plastic. 
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     Elasto-Plastic Model          Stiffness Degrading Model 
            (Steel members)        (RC members) 
 

Fig. 2.22. Elasto-plastic and stiffness degrading hysteresis models 
 
 
Elasto-Plastic Model 
 There are two stiffness states in the elasto-plastic model (Fig. 2.22.a): k or αk. Initial 

loading (0-1 or 0-1’) starts with the stiffness k, and when the internal resistance reaches the 

plastic state, the system yields and deforms along the yield plateau with post-yield stiffness αk 

(1-2). Unloading and reloading (2-3; 4-5; 6-7) take place along the elastic paths with the 

initial stiffness k.  When the direction of loading changes from loading to unloading or vice 

versa along these paths, the stiffness does not change. On the other hand, when the internal 

resistance reaches the plastic state along these paths at points (3, 5 or 7), plastic deformations 

occur along the yield plateau with post-yield stiffness αk (3-4 or 5-6).  

 
Stiffness Degrading Model 
 In the stiffness degrading model (Fig. 2.22.b), unloading and reloading stiffnesses are 

different. Unloading from the yield plateau takes place with the initial elastic stiffness k (2-3 

or 5-6). Reloading then follows with a degraded stiffness defined from the point of complete 

unloading (3, 6 or 8) to the maximum deformation point in the same direction which occurred 

during the previous cycles (points 4, 2 or 9). Unloading from a reloading branch before 

reaching the yield plateau also takes place with the stiffness k (7-8).  

 Under an earthquake excitation, nonlinear systems can only develop a resistance 

bounded by their lateral yield strength Fy, but they respond at larger displacements. Consider 
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three SDOF systems with the same initial stiffness k and period T, subjected to the same 

earthquake ground motion üg (Fig. 2.23). Their properties, from the weakest to strongest are:  

 
System 1: Elasto-plastic with yield strength Fy1 and yield displacement uy1 

System 2: Elasto-plastic with yield strength Fy2 and yield displacement uy2 (Fy2  Fy1) 

System 3: Linear elastic, i.e. Fy =  

  
 
 
 
 
      
        
 
 
 
 
 

 
 
 
 

Fig. 2.23. Three SDOF systems with the same initial stiffness k, but different yield strengths Fyi, 
subjected to a strong ground excitation cycle. 

 
 

We can expect that the weakest system (System 1) deforms most, to an absolute 

maximum displacement of umax1, while system 2 deforms to a lesser maximum displacement 

of umax2. Meanwhile the linear elastic system deforms to a maximum displacement of ue under 

the same earthquake ground motion. These maximum absolute displacements umax1, umax2 and 

ue are called the displacement demands of the earthquake from systems 1, 2 and 3, 

respectively. We can also define these demands in terms of a dimensionless deformation ratio 

μ, called the ductility ratio. 

      (2.61) 

 
Therefore, an earthquake ground motion demands more ductility from systems with less 

strength. 

  (2.62) 
 
Fe is the elastic force demand above, and μe = 1 theoretically for linear elastic systems.  

The force terms on the left in Eq. (2.61) are the strengths (capacities) whereas the 

terms on the right are the ductility ratios (demands).  
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Example 2.6. The SDOF system given in Example 2.4 is defined as an elasto-plastic system 
with Fy = 0.1mg  and  α=0. Determine the displacement response, u(t), under the same üg(t).  
 

 
    SDOF system         Ground Acceleration        Elasto-plastic behavior 
 
Solution:  Elasto-plastic system. 
 

m Tn (s) ωn (rad/s) ξ Δt (s) c kelastic α fy u0 ů0 ü0 fs(0) 
1 1 6,28 0,05 0,1 0,628 39,478 0 0,981 0 0 0 0 

 
      where  ki is the tangent k at ui. 

         
 
i t ui ůi üi ki ki* Δpi* Δui Δůi Δüi 

C
on

t’d
 0 0 0 0 0 39,478 452,045 -4,905 -0,0109 -0,2170 -4,3403 

1 0,1 -0,0109 -0,2170 -4,3403 39,478 452,045 -12,729 -0,0282 -0,1291 6,0978 
2 0,2 -0,0390 -0,3462 1,1985 0,000 412,566 -6,979 -0,0169 0,3540 4,6826 
3 0,3 -0,0559 0,0078 5,8811 0,000 412,566 7,180 0,0174 0,3324 -5,1139 
4 0,4 -0,0385 0,3402 0,7672             

Calc. Actual 

C
on

t’d
 

i t fs(i) Δfs(i) fs(i+1) fs(i+1) ui+1 ůi+1 üi+1 
0 0 0 -0,428 -0,428 -0,428 -0,0109 -0,2170 -4,3403 
1 0,1 -0,428 -1,112 -1,540 -0,981 -0,0390 -0,3462 1,1985 
2 0,2 -0,981 0,000 -0,981 -0,981 -0,0559 0,0078 5,8811 
3 0,3 -0,981 0,000 -0,981 -0,981 -0,0385 0,3402 0,7672 
4 0,4               
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0

0,5
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2.6.3 Ductility and Strength Spectra for Nonlinear SDOF Systems 
   

We can solve the nonlinear equation of motion 
 

 ü ü     (2.63) 
 
for different elasto-plastic systems with the same Fy and , but different ki (or Ti ) under the 

same earthquake ground motion üg. Accordingly, we can obtain the maximum displacement 

umax,i corresponding to each system with ki , or Ti. This is schematized in Fig. 2.24 under a 

strong ground excitation cycle. 

 
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2.24. Three SDOF systems with the same strength Fy, but different initial stiffnesses ki, subjected 
to a strong ground excitation cycle. 

 
 

Then,   versus Ti can be plotted as a spectrum, called the ductility spectrum. 

If this process is repeated for different Fy values, we obtain ductility spectra for constant 

strength values Fy. The Fy values are usually expressed as a ratio of mg in these charts. 

Ductility spectra obtained for the Düzce 1999 ground motion is shown in Fig. 2.25. 

 

 
 
 
 
 
 
          
 

 
 
 
 

Fig. 2.25. Ductility spectra of the 1999 Düzce NS ground motion for different constant strength ratios. 



70 
 

Next, we can convert the  - T (ductility) spectra to a Fy – T (strength) spectra by 

graphical interpolation. If we assume a constant ductility value on Fig. 2.25, it intersects each 

Fy curve at a different T value. Hence, a set of Fy-T values are obtained for a constant ductility 

ratio of . We can plot the set of Fy-T values for constant ductility as the strength spectrum. 

When this process is repeated for different constant ductility values, a family of constant 

ductility curves is obtained which is called the strength spectra. The strength spectra obtained 

for the Düzce 1999 ground motion is shown in Fig. 2.26. This graphics is also called the 

inelastic acceleration spectra (Sai – T) for constant ductility . 

 

 

 

 

 

 
 
 
 
 

 
Fig. 2.26. Strength spectra or inelastic acceleration spectra of the 1999 Düzce NS ground motion for 

different constant ductility ratios. 
 

 
 The correspondence between the ductility spectra in Fig. 2.25 and the strength spectra 

in Fig. 2.26 can be explained with a simple example. Point  in Fig. 2.25 is on the Fy =0.40 

mg curve at T= 0.21 s with =2. Similarly, point B is on the Fy =0.20 mg curve at T= 0.71 s 

with =4. These two points are also marked on Fig. 2.26, at the same period values on the 

corresponding constant ductility curves for  =2 and 4. Their Fy values are exactly the same.  

If we know the period T and strength Fy of our SDOF system, then we can directly 

calculate the ductility demand of the earthquake from the inelastic acceleration spectra. On 

the other hand, if we have a given (estimated) ductility capacity   for our system, then we 

can determine the required (minimum) strength for not exceeding this ductility capacity under 

the considered ground motion. This is very suitable for the force-based seismic design. 
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2.6.4 Ductility Reduction Factor (R  ) 

R   is defined as the ratio of elastic force demand Fe to the yield capacity Fy of the 

nonlinear SDOF system with the same initial stiffness k, under the same earthquake ground 

excitation üg (Eq. 2.64), which is depicted in Fig. 2.27. 

 
      (2.64) 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2.27. Force-displacement responses of a linear elastic and a nonlinear SDOF system under an 
earthquake ground excitation üg. 

 

There is a corresponding ductility demand  from the nonlinear system with 

the initial stiffness k=Fy/uy and the initial period   . If this process is repeated for 

several nonlinear systems with different Fy and T values as in Fig. 2.23, a set of  

curves can be obtained, which can be plotted as a spectra. The  spectra obtained 

for the Düzce 1999 and El Centro 1940 ground motions are shown in Fig. 2.28. 

Usually it is observed that    where Tc is called 

the corner period of the ground motion. Then  . This assumption is 

valid for the mean  spectrum of many ground motions, although it is a crude 

approximation for a single ground motion.  
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Fig. 2.28.   spectra of the 1999 Düzce NS and 1940 El Centro NS ground motion 
components for different constant ductility ratios. 

 
 

The mean   spectrum can be idealized in a simple form shown in Fig. 2.29. 

 
 
 
          
         
          
 
 
 
 
 

Fig. 2.29. Idealized form of the spectrum. 

 

By using an exact  spectrum, or the idealized one, we can obtain the 

inelastic acceleration spectrum Sai and inelastic displacement spectrum Sdi from the 

corresponding linear elastic acceleration and displacement spectrum, Sae and Sde , 

respectively. If we exploit the identities 

 

 

 
 we obtain 

    (2.65. a, b) 
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Eq. (2.65.a) can be employed for obtaining the inelastic acceleration response spectra 

Sai directly from the linear elastic acceleration spectrum Sae by selecting an  ratio. This is 

very practical for seismic design since  factors for different types of structural systems are 

defined in seismic design codes. Similarly, inelastic displacement response spectra Sdi can be 

obtained from the linear elastic displacement response spectrum Sde by using Eq. (2.65.b). 

Inelastic acceleration (yield acceleration) spectra and inelastic displacement spectra calculated 

for the Düzce 1999 ground motion by employing Eqs. (2.65)  are shown in Figs. 2.30.a and 

2.30.b respectively for several  factors.  

 It is noteworthy to compare the strength spectra in Fig. 2.26 with the yield acceleration 

spectra in Fig. 2.30.a. In an elasto-plastic system, strength and yield acceleration are related 

through Fy=may. However the inelastic spectral curves are slightly different at short periods. If 

 was not constant for each curve in Fig. 2.30.a but it was a function of period as in Fig. 

2.28.a, then the two spectra would be the same. 

Fig. 2.30.b implies that the response displacements of linear elastic and inelastic 

SDOF systems are very close This property is discussed further in the following section. 

 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.30. Inelastic acceleration (yield acceleration) and displacement response spectra of the 1999 
Düzce NS ground motion component for different R   factors. 

(a) 

(b) 
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2.6.5 Equal Displacement Rule 

 
For medium and long period SDOF systems (T  0.5 second), R  =  implies the 

“equal displacement rule”, which is derived in Eq. (2.66) below with the aid of Fig. 2.31, Eqs. 

(2.61) and (2.64). 

 

   (2.66) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.31.  Force-displacement relationships of linear elastic and nonlinear SDOF systems under a 
ground excitation. ue ≈ umax implies the equal displacement rule. 

 
 

Equal displacement rule can be simply tested by plotting the variation of inelastic 

displacement ratio umax / ue with T which is shown in Fig. 2.32 for the ground motions 

employed in Fig. 2.18. The rule is verified for T > 0.1 second since the mean umax / ue ratio 

approaches unity after this period.  

 

 

 

 

 

 

 

 

Fig. 2.32. Variation of inelastic-to-elastic maximum displacement ratio with period. 
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3. 
 

Response of Building Structures to  
Earthquake Ground Motions 

 

 

 

3.1 INTRODUCTION 
 

Building structures are multi degree of freedom (MDOF) systems where more than 

one displacement coordinate is necessary for defining the position of the system during 

motion.   

The minimum number of displacement coordinates required to define the deflected 

shape of the system properly at any time “ ” during motion is the number of “degrees of 

freedom”, DOF. They are the independent coordinates (displacement , rotation , etc.) 

that change with time. 

 

3.2 EQUATIONS OF MOTION 
 
 We will develop the equation of motion of a MDOF system by employing a shear 

frame for brevity. A shear frame is a single-bay, N-story frame consisting of flexible columns 

and fully rigid girders where the story masses are assigned to the girders. An N-story shear 

frame under base excitation üg (t) is shown in Fig. 3.1. Since the girders are rigid, there are no 

joint rotations at the joints and transverse displacements at both ends of a girder are identical. 

Accordingly only one degree of freedom ui is sufficient for each story i, which is along the 

girder where the mass mi is assigned. Each story i has a total shear stiffness ki that is 

composed of the column shear stiffnesses  in that story. 

 The equation of motion under base excitation has the same form with Eq. (2.5), where 

the scalar displacement variables for a SDOF system are replaced with the 

vectorial displacement variables for a MDOF system. Similarly, the scalar mass, 

stiffness and damping property terms are replaced with the associated matrix quantities: 
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    ü ü ü                 (3.1) 
where 

   ü ü           (3.2) 

 
The vector l is transmitting the ground displacement ug to the story DOF’s above as rigid 

body displacements. It is called the influence vector. l = 1 for shear frames since a unit 

displacement at the ground is transmitted equally to all DOF’s defined at the stories above. 

  

 

 

 

 

 

 

 

 

Fig. 3.1. An N-story shear frame subjected to the ground excitation üg (t) 
 

When ütotal and l are substituted from Eq. (3.2) into Eq. (3.1), we obtain 

 
    ü ü             (3.3) 
where 
 

      (3.4) 

 
is the mass matrix, and 
 

          (3.5) 

 

is the stiffness matrix. Each stiffness coefficient ki  in Eq. (3.5) represents the total lateral 

stiffness of the i’th story that is composed of the column shear stiffnesses as indicated above. 
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      (3.6) 
 

The displacement vector is composed of the N lateral story displacements (degrees of 

freedom). 

      (3.7) 

 
 It should be noted that the mass matrix in Eq. (3.4) is a lumped matrix which is 

indicating no coupling between the story masses. Moreover, the stiffness matrix in Eq. (3.5) is 

tri-diagonal, hence the lateral stiffness of a story is coupled with the lateral stiffnesses of the 

story below and above only (close-coupling). These are inherent properties of the shear frame 

in Fig. 3.1. 

 There is no analytical method for obtaining the coefficients of the damping matrix c in 

Eq. (3.3) from the damping properties of structural members. There is a practical approach for 

obtaining the damping matrix of a MDOF system, called Rayleigh damping (Chopra 2001, 

Chapter 11). The construction of damping matrix is not required however in the following 

approach.  

 

3.3 UNDAMPED FREE VIBRATION: EIGENVALUE ANALYSIS 
 
 When the force term on the right-hand-side of Eq. (3.3) is zero and the damping is 

ignored, we obtain the undamped free vibration equation: 

 
 ü                     (3.8) 

 
Free vibration can be induced by the initial conditions at t=0. 

 
             (3.9) 

 
If we can impose a “special” initial shape u0, then we observe harmonic free vibration 

(simple harmonic motion) with a fixed displacement profile along the height. A fixed profile 

indicates fixed proportionality of the story displacements with respect to each other. Vibration 

with a fixed displacement profile is identical to a single degree of freedom response which 

was previously discussed in Section 2.1 and shown in Fig. 3.2.b and c. These special 

displacement profiles are the “natural mode shapes”, and their corresponding harmonic 
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vibration frequencies are the “natural frequencies of vibration”. There are N such mode 

shapes for an N-DOF system. Typical displacement profiles representing such mode shapes 

are illustrated in Figs. 3.2.b and 3.2.c for a three story shear frame. When free vibration is 

induced with a non-special, or general initial displacement shape, then the profile of this 

initial shape cannot be retained during free vibrations, and a modality does not develop as 

shown in Fig. 3.2.d.  

We have to carry out eigenvalue analysis for determining the natural mode shapes and 

natural vibration frequencies. 

 

 

 

 

       

 

 

 

 

 
 

  (a)          (b)         (c)             (d) 
 
Fig. 3.2. A 3-story shear frame in free vibration. (a) Shear frame properties, (b) and (c) harmonic free 

vibrations with special initial shapes, (d) non-harmonic free vibration where the initial shape 
degenerates. Numbers on top indicate time sequence of deflections. 

 
 

3.3.1 Vibration Modes and Frequencies 

At a given mode, the displacement vector varies harmonically with time whereas its 

shape profile remains “fixed”. Then, we can express the modal displacement vector as the 

product of a harmonic function of time and a shape function. 

 
                 (3.10) 

 
Here,  describes the displacement profile along the height, or the mode shape whereas 

 is the time dependent amplitude of this profile. Their product in Eq. (3.10) gives the 
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modal displacement shape for a mode n at any time t during free vibration. This assumption is 

analogous to the method of “separation of variables” in solving partial differential equations.  

 Since free vibration motion with a mode shape is harmonic, we can assume a 

harmonic function for   

 
               (3.11) 

 
When  is substituted from Eq. (3.11) into Eq. (3.10) and the displacement vector in Eq. 

(3.10) is differentiated twice with respect to time, an expression for acceleration vector is 

obtained. 

             (3.12) 
 

In Eq. (3.12),  and  are the modal vibration frequency (eigenvalue) and mode shape 

(eigenvector) of the n’th mode, which have to be determined through an inverse solution 

approach.   

 Substituting  u and ü from Eqs. (3.10) and (3.12) respectively into the equation of free 

vibration motion (3.8), we obtain 

 
              (3.13) 
 

Here, = 0 is not an acceptable solution for Eq. (3.13), because it implies no vibration 

(trivial solution). Therefore, 

    (3.14.a) 
 
or 

    (     (3.14.b) 
         

This is a set of N-homogeneous algebraic equations.   =  is also a trivial solution 

(no deformation) for Eq. (3.14). A non-trivial solution is possible only if the determinant of 

 is zero (Cramer’s Rule): 

 
      (3.15) 

 

Eq. (3.15) is equivalent to an Nth order algebraic equation with N roots. The  values are the 

roots, or the eigenvalues (n=1, 2, …. N). If  is known for a mode n, then we can determine 

the corresponding shape vector   from Eq. (3.14). 
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Summary 

For an N-DOF structural system, there are N pairs of eigenvalues and eigenvectors 

, n=1, 2, ….. N. Their values are related to the mass and stiffness properties of the 

system. The system can vibrate in a simple harmonic motion independently at each mode, 

with the profile  at the associated angular frequency  

 

Example 3.1.  A 2DOF system is given in Figures (a) and (b), which are dynamically 
identical. Determine its eigenvalues and eigenvectors.  
 
 
 
 

 
 
 
 
   (a)           (b) 
 
The equation of motion for free vibration, from Eq. (3.8), can be written as  
 

       (1) 

 
Then Eq. (3.15) is applied to the given problem. 
 

    (2) 

 
A closed form solution cannot be determined from Eq. (2). This is possible however if we 
make a simplification in the parameters. Let . Then 
Eq. (3) can be obtained from Eq. (2), which is called the characteristic equation.  
 

             (3) 
 
Eq. (3) is a quadratic algebraic equation in  where n=1, 2. The roots of the quadratic 
equation are  and , which are the eigenvalues (note that the roots are not  
Solution of Eq. (3) yields the following roots: 
      

     (4) 

 

       (5) 

 
The eigenvectors will be determined from Eq. (3.14). For the given problem,  



91 
 

 

             (6) 

 

From row 1;                     (7) 
 

From row 2 :                              (8) 
 

We cannot find a unique solution for  from Eqs. (7) and (8) because they are a 
set of homogeneous equations. We can rather express in terms of  for both n=1 and 
n=2. 

          (9) 
 
Let   = 1  in Eq. (9) for   n=1 and n=2. Then we first substitute  into Eq. (9) and 
determine Next, we substitute  into Eq. (9) and determine 

 Accordingly, the modal vectors, or the eigenvectors for the two modes are 
determined. 
 

     (10) 
 
The mode shapes for the 2DOF system in Fig. (b) are plotted below. 

 

 

 

 

 
 
Example 3.2. Identify the degrees of freedom of the system given in Figure (a). Then 
determine its eigenvalues and eigenvectors. 
 
 
 
 
 
 
 
 
 
 
Solution 
The frame has 2 DOF’s, which are defined at the top end A of the cantilever column and 
shown in Fig. (b). Although this is correct and consistent for static analysis, we have to 
transfer these DOF’s to point B for dynamic analysis since the point mass is assigned to the B 
end of the rigid girder. The original (uA , θA) and the transferred (new) degrees of freedom (uB, 
vB) are shown in Fig. (b). Note that these two sets of DOF’s are dependent since uB=uA (rigid 
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body translation of AB) and vB =l θA (rigid body rotation of AB). The kinematic relation 
between (uB , vB) and (uA , θA) is sketched in Fig. (c). 
 
The stiffness equations for the first and second set of DOF’s can be written as (determine as 
an exercise), 

 and       (1.a, b) 

 
Then the mass and stiffness matrices for the second set of DOF’s are, 
 

     (2.a, b) 

 
Let’s assume l=h for simplicity. Then  gives, 
 

      (3) 
 
In Eq. (3),  The two roots of the quadratic Eq. (3) can be determined as 
 

 
 
Substituting  into Eq. (3.14) and solving the homogeneous set of linear 
equations, we obtain the two eigenvectors. 
 

n =1:   
 

n =2:     
 
The mode shapes are sketched below.  
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3.3.2 Normalization of Modal Vectors  
 

Let    where  is called the nth modal mass. If we divide 

  then 

     (3.16) 

 

The modal vector is now normalized with respect to the modal mass . This is 

practical in numerical applications because it reduces the amount of arithmetical 

computations. Most of the computational software directly calculates mass normalized modal 

vectors in earthquake engineering practice. 

 

 Example 3.3. Consider Example 3.1. Calculate the mass normalized modal vectors. 
 

 
 

 
 
The mass parameter m can be neglected in both  terms since m is arbitrary. Then, 
 
      

 
are the normalized modal vectors. It can be verified that the normalized modal vectors satisfy 

 

 
Hence,  for mass-normalized modal vectors. 
 

3.3.3 Orthogonality of Vibration Modes  
 

Let’s consider two modes n and m, with   From Eq. 
(3.14.a),  

     (3.17. a, b) 
 
Pre-multiplying Eq. (3.15.a) with   and Eq. (3.17.b) with   respectively, 
 

   (3.18. a, b) 
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Now, transposing both sides of Eq. (3.18.b) and considering that 

  due to the symmetry of both matrices, 

 
     (3.19) 

 
Finally, subtracting Eq. (3.19) from Eq. (3.18.a), 

 
     (3.20) 

 
  Since  in general,  
 

      (3.21) 
 
This is the condition of orthogonality of modal vectors with respect to the mass matrix. A 

similar orthogonality condition with respect to the stiffness matrix follows from Eq. (3.19). 

 
      (3.22) 

 
Therefore modal vectors are orthogonal with respect to m and k. 

 

Example 3.4. Consider Example 3.1. Verify orthogonality of modal vectors with respect to 
the mass matrix. 
 
          

 
A similar orthogonality condition can also be verified for Example 3.2. 
 
 
3.3.4 Modal Expansion of Displacements  
 

Any displacement vector  can be expressed as a linear combination of the 

orthogonal modal vectors   : 

 
            (3.23) 
 

 in Eq. (3.23) are the modal amplitudes, or modal coordinates. 

 For a set of    , we can determine  by employing the orthogonality property of 

modal vectors. Let’s pre-multiply all terms in Eq. (3.22) by   . 

 
       (3.24) 
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All parentheses terms are zero due to modal orthogonality with respect to mass, except the 

 term. Then, 

             (3.25) 

 
The denominator term is equal to 1 if the modes are mass normalized. 
 

Example 3.5. Determine the modal expansion of  in terms of the modal vectors 
determined in Example 3.4. 
 

      

       

 
Substituting into Eq. (3.23), 

 
             

 

 
3.4 FORCED VIBRATION UNDER EARTHQUAKE EXCITATION 
 
 We will reconsider the equation of motion of a MDOF system that was given by Eq. 

(3.3). 

        ü ü          (3.3) 

 
u can be expanded in terms of modal vectors by using Eq. (3.23). 

 

 (3.26) 

Substituting u(t) from Eq. (3.26) into Eq. (3.3) and calculating the appropriate time 

derivatives in Eq. (3.3), we obtain 

 

 (3.27) 

  
Pre-multiply each term in Eq. (3.27) by  , 
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 (3.28) 

 

Only those terms with  r=n  are non-zero due to the orthogonality of modes. Although this is 

theoretically valid for  and , we can also assume the orthogonality of modal vectors with 

respect to  .  

 (3.29) 

 
The terms in the first, second and third parentheses on the left hand side are the modal 

mass , modal damping  and modal stiffness , respectively. The term  on the 

right hand side is called the modal excitation factor,  

 
      (3.30) 

 
      (3.31) 

 
      (3.32) 

 
       (3.33) 

 

When the parentheses terms in Eq. (3.29) are replaced with the definitions in Eqs. 

(3.30) to (3.33), a compact form is obtained. 

 
    (3.34) 

 
Dividing all terms by  and introducing the modal damping ratio and modal vibration 

frequency from Section 2.4.1 leads to a final normalized form.  

 
    (3.35) 

 

Eq. (3.35) is valid for all modes, n = 1, 2… N. This is equivalent to a SDOF system in the 

modal coordinate   

 

 Equations (3.29-3.35) describe the modal superposition procedure where the system 

of N-coupled equations of motion of the MDOF system in Eq. (3.3) is replaced with N-
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uncoupled equations of motion of equivalent SDOF systems in Eq. (3.35). This procedure 

provides significant advantages because working with coupled stiffness and mass matrices is 

much more difficult in applying numerical integration methods compared to integrating the 

uncoupled equations of motion separately. 

Now, let’s recall the equation of motion of a SDOF system under base excitation 

from Eq. (2.6). When Eq. (2.6) is normalized similar to the normalization of Eq. (3.34) into 

Eq. (3.35), we obtain 

 

ü ü  (3.36) 

 
The only difference between Eq. (3.35) and Eq. (3.36) is the  term applied to the ground 

excitation ü  in the modal equation of motion. Therefore the solution procedures developed 

for SDOF systems under earthquake excitation in Chapter 2 are also valid for solving Eq. 

(3.35). 

 

3.4.1 Modal Superposition  

 Modal superposition procedure for solving Eq. (3.3) is summarized below in a 

stepwise form.  

1. Carry out eigenvalue analysis of Eq. (3.8) and determine the modal properties         

) for n=1, 2……N. 

2. Construct Eq. (3.34) or (3.35) for each mode n. 

3. Solve Eq. (3.34) by using the methods developed for SDOF systems in Chapter 2 (ü  

is scaled by ), and determine  for n=1, 2……N. 

4. Transform from modal to physical coordinates by using Eq. (3.26). 

 
3.4.2 Response Spectrum Analysis  

The third step in the mode superposition analysis procedure above can also be 

performed by response spectrum analysis in a very simple manner. Let  be the 

displacement spectrum for üg(t). Then, 

 
 

 
(3.37) 

and 
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 (3.38) 

    
Also 

 

 

(3.39) 

where  
 (3.40) 

 
 
Accordingly,  

   (3.41) 

 

In Eq. (3.41) above,  is the maximum value of the n’th mode displacement 

vector . However since the time dependence is lost in Eq. (3.44), we cannot apply Eq. 

(3.26) directly and combine the maximum modal displacement for obtaining the maximum 

displacement distribution Since all  and accordingly  do not occur 

simultaneously,   

 
 

 
or    

 
 

 

Modal responses are independent from each other, and the maximum values of a 

response parameter (displacement, rotation, internal force, moment, etc) occur at different 

times at each mode, without any synchronization. Hence a statistical combination is necessary 

for obtaining the maximum combined response. The SRSS (Square Root of the Sum of 

Squares) rule provides good approximation for combining the modal maxima of displacement 

components. 

 
 (3.42) 

 
or, in general 
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 (3.43) 
 

SRSS is equally applicable for estimating the maximum value of any force parameter 

(moment, shear, stress, etc.) or displacement parameter (curvature, rotation, displacement, 

strain, etc.) from the superposition of the associated maximum modal values.  

 

Example 3.6. Determine the maximum displacement distribution of the 3-story shear frame in 
Fig. (a) under the acceleration spectrum given in Fig. (b). The results of eigenvalue analysis 
are also given below. 
 
 
 
 
 
 
 
 
 
 
 
       (a)      (b) 
 

           k : total lateral stiffness for both columns 
 

 

 

 

 
 

 
 

Solution 
When we enter the response spectrum with the modal period values, we determine the modal 
spectral acceleration values. 

 
 

 
Then the modal masses and modal excitation factors are determined. 
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Let    (drop the max index).   are obtained from Eq. (3.38) and maximum modal 
displacements are determined from  Eq. (3.41). 
 

  

 

 
 

 
Finally, the modal spectral displacements are combined with the SRSS rule for obtaining the 
maximum story displacement distribution.  
 

 
 

It may be noted that  , i.e. the first mode displacements dominate the total 
displacement distribution. In particular, 
 

 = 5.50 cm 
 
 

3.4.3 Equivalent Static (Effective) Modal Forces 

We can define an equivalent static force vector  for each mode n, which 

produces the modal spectral displacements when they are applied to the MDOF system. 

 

 

 

 

 

 

 

At any time t during dynamic response, dynamic equilibrium requires  

 
               (3.45) 

 
Substituting     from Eq. (3.10) into Eq. (3.11), 
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 (3.46) 
 
We can express the modal forces in a simpler form. Eq (3.14) for free vibration can be written 

as 

 (3.47) 
 
Multiplying each term by  gives 

 
 (3.48) 

 
Substituting the right hand side of Eq. (3.48) for the middle term in Eq. (3.46), we obtain 
 
 

 (3.49) 
 
This is a more practical expression since the diagonal matrix m is easier to work with 

compared to the banded matrix k having off-diagonal terms. 

If we employ response spectrum analysis, then   in Eq. (3.49). Then, 

substituting   from Eq. (3.38) into Eq. (3.49), 

 

 (3.50) 

 
Finally, we obtain a simplified expression for the modal spectral force vector after rearranging 

Eq. (3.50). 

 (3.51) 
 
The total force at the base  (modal base shear force) is equal to  where 1  is the unit 

vector. 

 

 (3.52) 

 
Then,  

 (3.53) 

 

where  is the effective modal mass. With this definition, the spectral response at 

each mode under an earthquake base excitation that is expressed by its acceleration response 
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spectrum can be represented on a simple sketch of an equivalent SDOF system as shown in 

Fig. (3.3).  

 

 

 

 

 

 

 

 

Fig. 3.3. SDOF representation of spectral modal response at mode n. 

 

Effective modal mass has an important practical aspect such that the sum of effective 

modal masses for all modes is equal to the total mass of the building system. 

 

 (3.54) 

 
This is exact for a shear frame, and quite accurate for an actual building structure. Effective 

modal mass can be directly calculated from the mass matrix and the n’th mode vector. 

 

 (3.55) 

 

 
Example 3.7. Calculate the modal force vectors for the frame in Example 3.6. Also calculate 
the effective modal masses, modal base shear forces, and modal moments at the top end of the 
first story columns. Combine these forces and moments by SRSS for calculating the total base 
shear force and first story column top moment. 
 

Modal Forces 
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Effective modal masses 

From Eq. (3.55), 

 

 

M is the total mass where M=5m=5x175,000 kg=875,000 kg. Therefore the sum of effective 
modal masses is equal to the total mass (inaccuracy is due to the decimal truncation in modal 
vectors). 
 
Modal base shear forces 

 

 
 

 
Note that  for all n =1-3. 

 

Modal column moments 

   where V is the shear force in the column and h is the story height.  at 
the first story columns. Then the modal column top moments at the first story are; 
 

 
 

 
 

 
 
 
Example 3.8. Consider the frame given in Example 3.2. If the frame is subjected to the 
ground excitation defined by the acceleration spectrum given in Example 3.6, determine the 
displacement of the mass at end B, the base shear force and base moment at the support, and 
the top moment of the column. Let EI=4000 kN-m2, m=4 tons and h=4 m. 
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Solution 
Tn = 2π/ωn, which gives T1 = 1.786 s and T2 = 0.407 s from the results of Example 3.2. The 
corresponding spectral accelerations can be determined from the acceleration response 
spectrum of Example 3.6, as Sa1= 0.34 g and Sa2=1.0 g. 
 

   (1) 

 

 

 Modal amplitudes 

  (2) 
 
Modal displacement vectors 

   (3) 
where 

 
 

Displacements at the B end (SRSS combination) 

    (Both modes contribute) 

   (1’st mode dominant) 

 

Internal forces in column OA 

Let’s denote the bottom end (fixed end) of the column by O. The end forces (lateral force and 
bending moment) of column OA can be determined both by the stiffness analysis of the 
column by using the modal end displacements, or by applying the equivalent static modal 
forces and calculating the associated modal internal forces. We will do both. 
 
a) Stiffness analysis: Let’s write the stiffness equation for column OA at the n’th mode. 
 

     (4) 

 
Note that  (fixed end),  . Inserting the associated 
modal displacements from Eq. (3), together with EI and h values into Eq. (4), 
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Base shear force and base moment at O, and moment at A (SRSS combination) 

      (2’nd mode dominant)    

(2’nd mode dominant) 

   (2’nd mode dominant) 

 

b) Equivalent static modal forces: From Eq. (3.51),  
 

 

 
The modal forces and the associated modal moment diagrams of the column OA are shown on 
the frame below.  
 

 

 

 

         Mode 1          Mode 2   

 

 
Modal base shear forces, base moments and moments at A can be calculated from statics. 
Then their SRSS combinations give the final values. 

 

 

 

    

 
These values are very close to the values calculated from stiffness analysis. The differences 
are due to truncation errors. 
 
 
 
 
 




